Uncovering patterns in data

S. Marzen

April 19, 2023

So far, we’ve talked about modeling biophysical situations in one of two ways:

e The entire model is based on a few physical principles, e.g. revisit equilibrium statistical mechanics’
role in understanding shape and forces or revisit the role of chemical reaction kinetics in understanding
gene regulation and protein production.

e Part of the model is based on a few physical principles and the remainder is based on some data, e.g.
revisit Levy flights from ecology.

What we’ll talk about now are models that you make when you literally have no idea what is going on.
Crudely speaking, this is what is typical in statistics and in machine learning. I should mention that things
are changing. Nowadays, researchers adapt their models (sometimes) so that the model structure respects
physical or biophysical assumptions. For instance, I was asked once to model the prevalence of a protein as a
function of position and time. There were good reasons to assume a “reaction-diffusion” equation, basically
meaning that there was some drift and some diffusive aspect to how the proteins moved. However, we had no
clue what the reaction term was or what the diffusion constant was. These we could fit to data. This model
is a hybrid between “physics constrains everything” and “we have no idea”, as we are constraining the form
of the model based on certain biophysical assumptions about how things should act, but not constraining all
aspects of it. Only now are these hybrid models of dynamics beginning to take off in the machine learning
literature.

I hope that, by now, if you are given some data, you will have the tools to develop a minimal model
based on physical principles that describes some aspect of it. But what if you don’t? What if the system
is just too complicated and you don’t know where to start? Never fear. There are a few things you can do
regardless. In two of these situations, we’ll imagine that we get pairs of input and output, x; and y;, and
that we are trying to build a model that relates the two. In the last of these situations, we’ll imagine that
we just have a lot of data points z; and that we are trying to find structure in the data, somehow.

1 Supervised learning

In this section, we imagine that we have pairs (z;,y;). These could be anything. For instance, x; could be
the ligand concentration and y; could be whether or not the ligand-gated ion channel was open/how many
ligands were bound on average over a period of time. In general, we will think of xz; as the input and y; as
the output, although you may want to adapt the interpretation to whatever problem you’re dealing with.

Our goal will be to build a model of p(y;|z;). If we want to, from that model, we can choose the most
likely y; given the input x;. The only difference between regression and classification is based on the type
of output data. If the output data can take values in R", then we have regression; if the output data
is categorical, such as “apples” and “oranges”, then we have classification. The only material difference
between the two is the metric that we use to evaluate the model we build and our predictions thereof.

In both cases, we take a Bayesian perspective in which we try to simultaneously maximize the log
likelihood and minimize a regularization term, to be explained. It’s worth mentioning that maximization of
the log likelihood actually connects nicely to an information-theoretic concept that we skimmed over before

called the Kullback-Leibler divergence. The idea here is that there is some true distribution pgyutq from which
our data is sampled and that p,,oqe; is our model of the data. One natural way of viewing model-fitting is
to say that we are trying to make pgqutq and ppoder as close as possible. If we view model-fitting in this way,
rather than in the Bayesian way described below, we can choose literally any distance metric under the Sun.
There is, however, a good argument for choosing the Kullback-Leibler divergence, despite it being highly
sensitive to zero probabilities and not actually a distance metric:

pdata(m)) (1)

DL pastal|pmodet] = ;pdaw@ log (@)

If we are trying to guess data that comes out of an opaque box, and we have correctly modeled the data
distribution as pgatq, then we will need to ask on average H[pgqta] questions to understand each sample. But
if we have the wrong model of the data, pmoder, then we need an additional Dxr [Pdatal|Pmodel] questions on
average. Furthermore, a little math convinces us that

Dkp, [pdata | |pmodel] = Z Pdata (-T) 10g Pdata (33) - Z Pdata (37) log Pmodel (37) . (2)

The first term is the negative entropy of the data, which is something that we cannot alter by changing our
model. The second term is the cross-entropy or (more famously) the log likelihood. And so, by minimizing a
particular “distance” between model and data, we have maximized the log likelihood. In other words, there
are multiple roads that lead us to maximizing the log likelihood, though for our purposes we will stick with
maximization of the log posterior.

1.1 Regression

Let’s start with an example and build up. The simplest example of regression is linear regression. Imagine
that x; is some vector of real numbers and that y; is a single real number. For instance, maybe x; are
behavioral features and y; is someone’s change in body weight over the course of a month. I'm going to
posit— without any real reason why I should posit this— that

v =w'x; + b+ z (3)

where w is a vector of weights/coefficients, b is a bias term, and z; is zero-mean Gaussian noise. If someone
were to ask us to make a prediction about y; given only the input z;, we would guess (for reasons that will
be discussed in a second) w " z; +b. That is, the elements of w tell us what weight we give to each aspect of
the input, and the bias corrects for (usually unimportant) shifts in the average value of the output. Another,
completely equivalent way of describing the relationship in Eq. 3 is to write it probabilistically:

exp <_ A b>2> . (4)

po(yilr;) = 952

2mo2
Essentially, we are making a choice to model the output as a Gaussian given the input with mean w'z; + b
and standard deviation 2. The @ subscript refers to w, b, and maybe even o (to come later) as the list of
parameters involved in this model.

Brainstorm, with your in-class group, three or four datasets that you could use linear (or nonlinear) regression
to understand. Clearly identify what x; and y; are. Is a linear model reasonable? What about the assumption
of Gaussian noise?

Now, linear regression relies on Eq. 3 being at least somewhat accurate. But let’s imagine why things
might deviate. It is a general rule in physics that as long as you don’t have a large dynamic range on your
input, you can Taylor expand pretty much any input-output relationship and find something approximately
linear. But what if the dynamic range on your input is large? Or what if your noise isn’t Gaussian? The

first of these complications would cause us to go from linear regression to nonlinear regression. The second of
these complications leads to a more subtle change in how we want to approach the problem— which objective
function we choose to minimize.

To give you a sense of the space of nonlinear regressors, imagine that you had a powerful “function
approximator” that could literally nearly approximate any function. Further imagine that you had a powerful
set of learning algorithms that could train the parameters underlying this function approximator so that, in
finite time, you really do learn a function that matches the data. Surprisingly, these things exist. They are
called neural networks. We will not tackle neural networks in this class, but one way of thinking about the
utility of neural networks is simply to think of them as universal function approximators— trainable systems
that can approximate literally any function to within any desired accuracy. For any of these universal
function approximators, you can choose your objective function at will. The art of choosing the structure of
the neural network, its learning algorithm, and its objective function are good things to learn and will net
you large salaries at Google.

Back to linear regression! We will approach this from a Bayesian perspective, which will naturally
become the more typical perspective you’ll see on, say, Towards Data Science. What we want to do is choose
parameters 6 (comprising w, b, o) that maximize the posterior:

o = argmgmxp(ﬂl{xi,yi})- (5)

Basically, we want the parameters we choose to be as reflective of the data as possible. Recalling Bayes’ rule,

p({xs, yi }0)p(0)

(6)

we find that
p{{i, yi}10)p(0)

9 = argm;mx (e oih) (7)
= argmaxp({z;,yi}/0)p(9) (8)
= argmaxlogp({z;,y:}|0) +log p(6). (9)

We're going to assume that each of our data points (x;,y;) is completely independent of every other data
point, so that

p({zs, yi}0) = Hp(mi,inG) (10)

log p({xi,y:}10)

ZIOgP(ziain) (11)

and therefore

* = argmeaxglogp(a:i,y”&)+logp(9). (12)

Let’s take a quick look at our objective function. It’s comprised of two parts: one part that has to do with the
data itself, >, log p(z;, y;|6), the log likelihood; and one part that has to do with our prior belief about what
the parameters look like, log p(f). As we acquire more data, the log likelihood will always overtake the prior,
and we will choose parameters that cause maximal match between the model and the data. However, when
there isn’t enough data, the prior will govern the parameters that we find, and we may end up choosing—
for instance— parameters that are close to 0. The choice of prior can be thought of as a regularization, the
utility of which we will cover in a second when we look at linear tricks to do nonlinear regression.

At this point, the objective function looks intractable, but a little massaging gets it into a decent form.
Recall Eq. 4. From that, we can simplify the log likelihood, assuming that our prior over inputs is uniform:

1 i ’U)TIi —b 2
logp(z;,y:|0) = log (W exp (— (y 572) >> (13)

(yi —w'z; —b)?

1 2

= —ilog(27ro) — 572 (14)

LR T R
Zlogp(mi, yil0) = - log(2mo*) — 257 (yi —w z; —) (15)

i i=1
and therefore
D] D]

0" = arg max — == log(2ma?) — 252 Z(yl —w'x; —b)? +logp(w, b, o). (16)

i=1

The last thing we have to do is choose a prior over parameters. In all honesty, we don’t care very much about
o, and so we will focus on w and b. Typically, we end up assuming that these parameters are independent
(because we can, though you can do something different), that p(w,b, o) = [[, p(w;)p(b)p(c), where p(w;) is
our prior belief on the i** element of w. Now what do we do?

Again, you have no physical or biophysical model guiding your understanding of what w;, b, or o is
likely to be. You are essentially out in the Wild Wild West, choosing whatever prior you feel like. There
are a few key guiding concepts to choosing a good prior, the main one being: a good prior should prevent
overfitting. Imagine that you are modeling how x relates to y and that you have decided that the relationship
is nonlinear, and that in order to fit a nonlinear function in an easy-to-fit way, you have decided to write

Y = wo + w1 + waz? + ... + woz’ + 2, (17)

with z zero-mean Gaussian noise. This is equivalent to linear regression when (z, 2, ..., 2%) is treated as the
input. So now let’s imagine a weird and extreme situation, in which you only have nine data points. You may
not know this, but you will be able to find weights w; that cause the prediction § = wg+wiz+ws2?+...+wox?
to exactly match the true answer. That sounds like a great thing, but it might not be. What if your data
actually suggest a line with some scatter? Then, if someone asks you to predict y at a large z, your
complicated ninth-order polynomial that exactly fits your data will get the answer very, very wrong. In
jargon, you can interpolate, but you can’t extrapolate.

To avoid this catastrophe, we do something called regularize. Basically, we choose priors that prefer
weights that are closer to 0. That way, wg is unlikely to be large in the previous example, and you're
unlikely to be as bad as extrapolating. Within those guidelines— send weights to 0— there is plenty of room
for personal choice. Here are three typical priors, one of which does not regularize at all:

e p(f) is uniform over some potentially bounded region of space— an uninformed prior that makes no
attempt to prefer zero weights;

e p(0) is Gaussian with a mean at 0— leading to what’s called “ridge regression”;
e and p(f) o e M? leading to Lasso regression.

Of the two priors that prefer zero weights, the Gaussian prior is softer. You tend to see weights that are
closer to zero, but not equal to zero, while with the harsher prior, weights literally hit 0 when they are not
needed. In general, if one chooses priors of the form e~*?/” where p is a real number, weights will hit 0 when
p < 1 and will prefer 0 but not hit 0 otherwise. All this is to say, the choice of priors can be tricky, and in
some ways it is an art.

When we take logs, priors become what are called reqularizers. From Eq. 16, we deem our “objective

function” to be
|D|

252 (yi —w' @ — b)* + log p(w, b, o). (18)
=1

D
L= f|—2| log(270?) —
We are trying to maximize this log posterior. The first two terms correspond to the log likelihood, and the
second of these two terms is a constant off of what is known as the mean-squared error, a measure of our
model’s inability to match the output. The last term is the log of our prior, and it is known as a regularizer:

e the uninformed prior results in no regularizer;
. . . L . b2 w?
e the Gaussian prior results in a regularizer of 3y + >, 5+
: i : ; [] |w
e the Laplacian prior results in a regularizer of 5+ + 37, 5=,

Our goal is to not only maximize the log likelihood by setting weights so that the model exactly matches
the data, but to simultaneously minimize the regularizer by setting the weights to be as small as possible,
and this results in a tug-of-war. The one that wins is governed by A|D|, as we shall see— the strength of the
prior relative to the amount of data.

With this objective function in hand, there are in theory two ways of approaching linear regression, one
analytical and one numerical. Taking an arg max can be difficult, but when the parameter is any real number
or vector of real numbers, and when your objective function is so-called “convex” (and we won’t go into
this), it’s easy. You simply take the gradient of the objective with respect to 6, VgL, and set the answer
equal to the 0 vector. The two approaches become the following:

e One can numerically move 6 up the gradient of £ in whatever steps one feels like. You may remem-
ber this from multivariable calculus as gradient ascent. Plenty of software packages implement this
approach.

e One can analytically solve for the w, b, and ¢ that set the gradient to the zero vector. This approach
usually doesn’t work, but sometimes, one can turn the corresponding equations into iterative solutions.

Usually, one should numerically ascend the gradient of £ using ScikitLearn or the like to choose weights. To
choose a prior, standard practice is to divide your data into a training, validation, and test set. The test
set is there so that you can accurately calibrate how well your model is doing, e.g. what is the eventual
mean-squared error. The training set is there to choose weights for a particular set of “hyperparameters”
that have to do with the prior, and the validation set is there so that you can choose which prior you want.
The idea is this. We’ll pick a set of priors that we might want to choose. For each one of those priors, we use
the training set to choose weights, and then measure performance on the validation set. Then, you choose
the prior that performs best on the validation set, and measure its final performance on the test set. Need
picture.

If you want to merely use linear regression, stop here! The above paragraph is all you need. What follows
is designed to give you intuition for linear regression with an uninformed prior and ridge regression using as
much analytical horsepower as we can muster.

1.1.1 Uninformed prior
In the first case, p(f) is uniform. In this limit, Eq. 16 turns into
||

D] log(2mo?) — % > (i —w' 'z -) (19)

" = =
AB X 207 £

The calculus is grungy, and I include it here only if you're interested in the grunge. Solutions are provided
after the grunge, and I encourage you to skip to these. We’ll start with b:

oL
0 = = (20)
o |D|
= % ;(yi —w'z; — b)? (21)
|D|
i=1
0 = |D|{y) —[DPlw'(z) - Db (23)
{y) —w' () —0. (24)
We'll need to solve for b:
b=(y) —w'(z). (25)
Now we’ll move to w:
oL
0 = 3—% (26)
0 |D|
= B Z(yl —w'z; —b)? (27)
D] .
Zﬂ%,j(yi —w'z; —b) (28)
i=1
(xjy) — wT<:msj> —b(x;). (29)
Let’s write this in vector form: .
0= (zy) —w (zz') —blx) (30)
We now have enough information to solve for w and b. Substituting Eq. 25 into Eq. 30 gives
0 = (oy)—w' (z2’) = ((y) —w'(2)) (x) (31)
= (zy) —w'(zz") — (2)(y) + v (x){x) (32)
= ((zy) = (2)()) —w' ((z2) — (2)(2T)) (33)
w' ((za") = (2)(z")) = (oy) — (2)y (34)
w o= (a2T)—(@)") " (ey) - (2)()) (35)

We now have a closed-form solution for w. I should add that in practice, these covariance matrices (zz ") —
(x)(z ") can be close to singular, and so it is sometimes way better numerically to do gradient ascent. Even
so, the closed form solution can be useful in other ways (e.g., ask me about some of my work on linear
recurrent networks) and it also provides some insight about what matters for any particular weight. Namely,
a particular weight is larger if x; and y are more strongly correlated, though the strength of this weight is
modulated by how strongly correlated z; is with ;. From this closed-form expression for w and Eq. 25, we
immediately find

b=(y) — ((zy) — (&))" ((w2T) = (@)aT)) " (). (36)

This nasty expression is hard to interpret, but it breaks up into two terms. The first term corresponds to
the mean value of the output y, and the second term corresponds to the mean value of the prediction for
y. Any mean difference between the two is shoved into the intercept b, as one might expect. One can also

mathematically add a 1 to the input vector to take the place of an explicit intercept. In such a case, Eq. 35
is all you need.

Finally, let’s turn our attention to o, the size of the noise. The inferred size of the noise should be
determined by how wildly inaccurate our predictions are. If we substitute our expressions for b and w into
the objective function, we find

| D]
L = —glog@ﬂo Z —w'z; —b)? (37)
— 7%10g(2ﬂ0) é l«y w a:fb)) (38)
- _%log(%cﬁ) é L () — 20 (o)~ 2) 467 200 (@) 40T (waTw)(39)
= —@ log(2ma?) — £—| (oyy — U;rydmldxy) (40)

where I have skipped some of the gory algebra and where o,y = (2y) — (¥)(y), 02z = (xz ") — (x)(z7), and
oyy = (y?) — (y)2. The expression o, — a;'—ya;mlomy is the mean-squared error, or rather, on net how wrong
our predictions are. It is the difference of two terms. The first term is oy,, the variance associated with
the outputs. The second term looks complicated, amamlaw, and it is how much of the fluctuations in the
output are explained by our model. The difference of these two is how much of the fluctuations in the output
we fail to explain with our linear model.

With these simplifications, our

0
0 = 3* 41
oo (41)
d (|D| D|
= = (—2 log(27rg2) ~ o3 (ayy — U;ryomlazy) (42)
d 1 1 T
= m <2 10g02 + T‘Q(Uyy - Uryamlamy)> (43)
L1 T -1
= ﬁ - ;(O—yy ~ OgyOza Umy) (44)
= o°— (oyy — UIyUMlny) (45)
0F = Oy 05,00 Oy (46)
o = \/ayy O’TyO'gw;ley. (47)

So the estimated noise is exactly the unexplained variance in the outputs.

After all this algebra, what have we learned? We have estimated the weights as being the covariance
between inputs and outputs, weighted by the inverse of the covariance of the inputs. We have found out
that the estimated noise is exactly the unexplained variance. And it turns out that the amount of variance
explained, normalized by the total amount of variance to explain, is known as the (squared) correlation
coefficient,

2 U'Iy szl Oxy
pr=—" (48)
Oyy
The larger this squared correlation coefficient, the better our model. But be careful. If we build a model
that manages to explain by overfitting, p? will be artificially large. It pays to divide one’s data into a train
set and a test set, and to train the weights on the training data but to calculate the squared correlation
coefficient on the test set. Otherwise, you are liable to conclude that you have far more explanatory power

than you actually do.

1.1.2 Ridge regression

Let’s say we want to avoid overfitting, but still want to build our linear model. What we’ll do is add a term
that sends the weights to 0, if possible:

p(w,b,0) = e_bz/”\He_“’?/’\. (49)

It is not necessary to preference o to be close to 0, as higher or lower estimates of the unexplained variance
in outputs don’t lead to overfitting. The parameter \ can be as small or as large as we choose. If it’s large,
then b and w; are only slightly biased towards 0, and we are essentially in the regime of the uninformed prior
detailed in the last subsection. However, when A is small, we are more strongly asking weights to remain
near 0. We'll get into how to choose A in a second.

With this prior in hand, we are poised to modify our objective function as follows:

|D| 2 2
_ |D| 2 T o b w;
L == log(2mo”) — 5 i:1(yz w'z —b)* = o 3% (50)

There are factors related to A that we have dropped, as they have no dependence on o, b, w. One can
actually keep these terms in and use them to choose A\, but we won’t make analytic headway that way, so
T’ll tell you about a simpler technique for choosing the prior. This is essentially the same objective function
as before with a few small differences. Let’s take a look at what happens to the gradient:

0 = %ﬁ (51)
- (- By-ue--5) (52
_ g@_wu_w_; (53)
= -l b 64

b = 1+1§§;(<y>_wT<x>)' (55)

This is nearly the same as the formula we had before for the uninformed prior. The only difference is
a prefactor that decreases our estimate of the intercept— in essence, doing exactly what we expected by
preferencing the intercept towards 0. The more data |D| we have, the less the preference; but the stronger
our prior %, the stronger the preference.

Let’s look at our new gradient equations for w;:

oL
J
D w;
= —%(wj(y—w%—b»—yj (57)
D W
= D0 () — Gy — bty + 22 (58)
In vectorized form, this becomes
- D 1
0 = |U—2| ((zy) —w (zz ") — bz)) + P (59)

Notice— there’s only a slight change from before— the addition of %w This should have more weight precisely
when A is small, or when we place a strong prior on the weights being small.

Now, we combine (as before) the equations for b and w:

- 1 2
0 = (o) —w(z2") = ——— () —w'(2)) <$>> T oW (60)
(L+ 375 AD|
2 2
Oy + 3757 (TY) Oz + 5] (zzT) 42
= — - . + 2T |w. (61)
1+ 375 1+ 375 AD|
This solves as
2 -1 2
Ozz + 57 <x$T> 2 Oy + 3357 (TY)
w = AL n ;D I ST Rl (62)
1+ 375 D 1+ 375
This looks more complicated, but the key point here is the parameter %. When we have a large amount of

data compared to the strength of our prior, this parameter is small, and the solution for ridge regression is
almost nearly the solution with the uninformed prior. It’s only when this is not the case that a very different
solution takes hold. When this parameter is large, the optimal weights look almost entirely different:

AR Y2
wx(575) o =25l (63)

Still, the weights are governed by how x correlates with y, but it is interesting that we no longer subtract
the mean (x)(y). Furthermore, since (xy) is multiplied by A|D|, these weights can be vanishingly small, as
one would expect if our prior is to have small weights. As |D| increases, we interpolate smoothly between
these two extremes.

One thing we have not yet talked about is what o is. Based on our experience with the uninformed prior,
it must be the unexplained variance— but now the unexplained variance is going to be some complicated
function of o. Hence, these are not really closed-form solutions. What should we do? Exactly what the
paragraph before the start of these subsections outlined: use ScikitLearn.

1.1.3 Lasso regression
In this case, we suppose that p(w,b, o) o []; e~ lwil/Ae=Ibl/A "and get a slightly different objective function:

D

D| oy 1 T 2 |bl |ws]
= ——log(2 - — i — i — - — = E —_. 4
L 2 Og(o) 202 £ (yz W T; b) \ i \ (6)

Rather than go through the same exercise in getting as close to closed-form solutions as possible, T will
reiterate that what one does in practice is to follow the paragraph write before these subsections.

Essentially, what happens is that not only are weights decreased from their uninformed magnitude, but
that nonessential weights are sent to 0. Literally 0. Some people view this prior as an approximation to a
regularizer that asks for as few nonzero weights as possible. This prior is therefore, in some sense, a way to
do feature selection.

1.2 Classification

Now we imagine a different sort of problem, in which y; is one of a potentially non-numeric set. For instance,
y; might be “apple” or “banana”, and x; might be the size of the fruit and the color of its skin. Or, more
relevant to biophysics: maybe y; is whether or not a bacterium runs or tumbles and x; is the history of
chemoattractant that it has seen. Either way, we are still trying to model p(y;|x;). The quickest and easiest

model to make is that of logistic regression, which applies to the case in which we are trying to evaluate
probabilities of things that are either this (y = 0) or that (y = 1):

exp (wai + b)
i = 1lz;) = . 65
o =) = o S (63)

Equivalently, we have

1)
1+exp(wTz; +b)
Just as in linear regression, we are trying to learn w and b. Notice that unlike linear regression, we do not
have a Gaussian noise model. Rather, the noise model is implicit in Eq. 65.

Py = 0fz;) = (66)

Brainstorm, with your in-class group, three or four datasets that you could use logistic regression to under-
stand. Clearly identify what x; and y; are. Is a linear model reasonable? How could you make a nonlinear
model that is still within the purview of logistic regression?

One can certainly envision datasets that have more than two classes. In that case, what should we do?
We are now making a model of p(y;|z;) where y; is not just (say) active or inactive, but instead equal to
0, 1, 2, 3, or 4. In such cases, one can keep the spirit of logistic regression without its particulars. Our
model of p(y;|z;) can be proportional to an exponential of a linear function of z;. This is not the only
prescription. When making models of neural firing, one often employs a Generalized Linear Model in which
p(yilz;), with y; the number of spikes, is assumed to be a Poisson distribution with the rate equal to some
nonlinear function of a linear function of x;. What model you choose has a lot to do with your data, and is
an art more than a science. If you have no idea what noise model to choose, try to choose a noise model that
has so many parameters that it can approximate any noise model under the Sun. (This is machine learning
in a nutshell.)

But back to logistic regression. We would like to evaluate, again from a Bayesian perspective, what w
and b to choose. As before, this comes out to choosing § = (w, b) so as to maximize the posterior:

POtrs) =) o0
Or,
0" = argmaxp(0{z; yi}) (68)
— re max PUE 9i310)p(6)
B 8 0 p({zi, yi}) (69)
= argmaxlog p({z;,y:}|0) + log p(6). (70)

Again, as in linear regression, the first term is the log likelihood, and the second term depends on our priors
for what w and b are likely to be. Just as before, assuming that the inputs are equally likely to be anywhere,

logp({z4,yi}10) = Zp(yi|ﬂ?i,9) = |Dl{p(ylz,0)). (71)

So just as with linear regression, the log likelihood term is far bigger when there is more data. Let’s talk for a
second about the low data limit. In linear regression, this led us to consider the issue of overfitting, wherein
we could choose a model that perfectly modeled all the given data but did a terrible job of extrapolating.
A similar thing can happen here. In fact, we can do this by a pretty simple prescription if we have few
enough data points: find w and b such that w 'z + b has the right sign for each of the given inputs, and
then multiply w and b by arbitrarily large constants. With this prescription, you are guaranteed to model
the input data perfectly. However, on new data, you are likely to be very certain and very wrong. Hence,

10

log p(f) again plays the role of regularization to prevent this overfitting from happening. The method for
choosing priors is roughly the same as before. There will usually be some shape parameter A as before that
modulates the strength of the priors, and as with linear regression, the parameter that governs how closely
we pay attention to priors is A|D].

There are no closed-form solutions that I know of for w and b, so you are safe from grungy algebra!

2 Dimensionality reduction

Sometimes, instead of modeling the relationship between inputs and outputs, we simply have a ton of inputs,
and we want to find structure in the inputs. Typically, this looks like a realization that the inputs are well-
described by some “latent variable” that is low-dimensional. For instance, maybe the inputs look like Fig.
?7?. It appears that there are two clusters of some size. Wouldn’t it be easier to simply tell the experimentalist
whose data you are analyzing that they essentially have two types of input?

With that idea in mind, let’s develop an objective function to uncover these latent variables. We imagine
that if we have input x, we encode it as fy(z), where fg(x) is lower-dimensional. (So, if z is a real-valued
vector with five dimensions, fs(z) might be a real-valued scalar.) We then decode our encoding using g4, so
that we nearly recover x as gy (fo(x)). At the end of all this, we mark ourselves as having come d(z, g (fo(x)))
to recovering the input, where d is some “distortion measure”, to be discussed. What we’d like to do is find
parameters 6, ¢ that underlie our encoding and decoding functions such that we minimize

¢*, 0" = arggfig<d(w,g¢(fe(w)))>~ (72)

If f were allowed to be any dimension, this problem would be very easily solved: simply set f and g to
the identity. But we include a constraint: we say that f is of a certain dimension that is lower than the
dimension of the input. In this way, we usually guarantee that there will be some error in recovery. The
problem of choosing optimal encoders and decoders becomes difficult.

When things are difficult, we always turn to a few typical simplifying assumptions. First, we will set d
to be

d(w,go(fo(x)) = (= = go(fo(x)) " (= = go(fo())), (73)

so that the expected distortion is the mean-squared error. This is not always a good choice. For instance, if
you are trying to recover hidden structure in images, the mean-squared error is a horrible choice of distortion
measure. Sometimes an image that has similar mean-squared error relative to the original as another can
look, perceptually, far better. But the benefit of mean-squared error is that you often get simple algorithms
with analytic or nearly analytic results. The second approximation we’ll make is that g and f are both linear
maps, so that

9¢(fo(x)) = Pz, (74)

where P is a low-rank matrix. The combination of these two assumptions will allow us to recover a popular
algorithm called Principal Components Analysis (PCA).

The intuition behind the algorithm is so simple that I will first deal with a minimal example and build
from there. Let’s imagine that x is a d-dimensional vector whose independent components x; have variance
o? and mean 0. What should P be? A good guess is that P should cause us to carry over, with complete
fidelity, certain components of the vector. The other components of the vector are most likely to be 0, and
so we would guess 0 for those components (the decoding). If the components of 2 were not independent,
a different solution would be warranted, as we’ll see, but for now, this amounts to us choosing P to be a
“projection matrix”. A projection matrix is a diagonal matrix that looks like the identity matrix, but with
0’s instead of 1’s in certain entries. Our goal is to figure out which entries should have 0’s instead of 1’s.

(You might be wondering how big of an assumption it is to say that the data is mean zero. That is not
much of an assumption at all! I can pre-process the data so that it has zero mean without loss of generality.)

11

Let’s call the set of vector elements that we reproduce exactly X;, and the set of vector elements that
we guess 0 for X,,;. A moment’s thought gives us

(da,Pz))= Y (@)= Y of. (75)

1€ Xout 1€Xout

We’d like to make this as small as possible, given the constraint that there are only k elements transmitted
with perfect fidelity, |X;,| < k. But that’s easy: we merely choose the d — k elements with the smallest
variance and place them in the out group. In other words, we choose to keep track of only those components
of = with the largest variance. This, in essence, is PCA.

Now let’s add some complications and see what happens. Imagine that, instead of viewing our data in
the original space, we rotate the original space so that our elements are all mixed up. What should we do?
We still want to pull out just those components with the highest variance. So, we rotate our data back into
its original frame, pull out those components with the highest variance, and rotate the processed data back
into the new frame afterwards.

That is the geometric intuition. That sounds like it’d be hard to do, but really what we’re doing is
deciding how to rotate back and forth using the eigenvectors of a matrix that describes the covariance of
the data. It turns out that the analytic procedure for PCA— which is no more than what we’ve described
above- is as follows:

e Zero-mean your data so that (z) = 0.

e Calculate the covariance matrix (zz).

e Calculate the eigenvectors (the rotated axis) and corresponding eigenvalues o2 of the covariance matrix
and sort the eigenvectors based on eigenvalues, so that high-value eigenvalues are preferred.

e Choose a number k (arbitrary for now, one second) and take the first &k sorted eigenvectors.

The only thing left to do is to visualize these eigenvectors. They might correspond to representations of
people’s faces, or of handwritten digits, or something more abstract. But these eigenvectors are the salient
low-dimensional features of your data that you’ll want to keep track of if you only get & components.

The final piece of the puzzle: how do we choose k7 There are a number of rules for this, and not one of
them has completely taken over. The easiest rule is the “Elbow Rule”, in which you plot the unexplained
variance (Y ;. 02) as a function of k. These graphs tend to look like an elbow. It seems reasonable to
choose k to be the location of the kink, so that you don’t run into the problem of diminishing returns.

Alternatively, you might actually have a noisy channel that you want to send things down through. In
that case, k should be adapted to the noisy channel. That leads us to a perspective on dimensionality
reduction related to rate-distortion theory, which we won’t go through here, but essentially the constraint
on k is replaced with a constraint on rate.

There are plenty of advancements in dimensionality reduction since PCA, and they essentially all rely on
better choices of f and g, and perhaps d. An autoencoder— a neural network with a forced bottleneck— can
substitute for f and g. Sometimes, those autoencoders can be evaluated using the rate-distortion framework,
if what one desires is to eventually send the latent variable somewhere!

©@®

12

